Express Pharma
Home  »  Research  »  Researchers discover new ways to shut down signals involved in brain diseases

Researchers discover new ways to shut down signals involved in brain diseases

18

The researchers now reveal NOS1AP binds to NOS-1 in a surprisingly complex manner

A research team based at the University of Eastern Finland and the Turku Centre for Biotechnology have found new ways to block a pathway that may be responsible for several brain disorders, which could open the door to developing better treatments. The protein NOS-1 generates nitric oxide, a chemical signal that is linked to neurological disorders from neurodegeneration, stroke and chronic pain sensitivity to anxiety and depressive disorders.

The researchers involved in the new work previously found that neurodegeneration or brain lesions caused by NOS-1 requires it to bind another protein called NOS1AP (or CAPON). They asked if damage can be reduced by preventing binding of NOS1AP to NOS-1, as NOS-1 cannot directly be controlled by drugs. The researchers now reveal NOS1AP binds to NOS-1 in a surprisingly complex manner, and developed two separate ways to prevent it. By studying precisely how NOS1AP binds to NOS-1 they found two separate sites of interaction, by demonstrating that two different parts of NOS1AP are required for binding to NOS-1 on separate sites. Each site could be blocked, one by a peptide previously developed by the team and the other by a new synthetic protein generated for this study.

The second site was completely unexpected as no similar interaction had been previously described and so nobody had known to look for it before. Blocking either site by itself reduced the damaging signals caused by NOS1 in brain cells. The results were replicated in several regions of brain tissue that are sensitive to degeneration caused by NOS-1. This means that it is now easier to design drugs that control damaging signals from NOS-1 in the brain because it can be done in two different ways or both ways may be combined. This might lead to development of new drugs for several different neurological diseases and conditions.

EP News BureauMumbai

Comments are closed.